
Spring 2002 CS 461 1

Peer-to-Peer Networks

Outline

Survey 

Self-organizing overlay network

File system on top of P2P network

Contributions from Peter Druschel 
and Don Towsley UMass-Amherst

• with help of lots of others (J. Kurose, B. Levine, 
J. Crowcroft, CMPSCI 791N class)



Spring 2000Spring 

2002

CS 461 2

Peer-peer networking



Spring 2000Spring 

2002

CS 461 3

Peer-peer networkingFocus at the application level



Spring 2002

Background

• Distribution

• Decentralized control

• Self-organization

• Symmetric communication



Spring 2002

Examples

• Pioneers

– Napster, Gnutella, FreeNet

• Academic Prototypes

– Pastry, Chord, CAN,…



Spring 2000Spring 

2002

CS 461 6

Common Issues

• Organize, maintain overlay network

– node arrivals

– node failures

• Resource allocation/load balancing

• Resource location

• Locality (network proximity)

Idea: generic p2p substrate



Spring 2000Spring 

2002

CS 461 7

Architecture

TCP/IP

P2P Substrate

Network 

storage

Event 

notification

Internet

self-organizing

overlay network

P2p application layer?



Spring 2000Spring 

2002

CS 461 8

Client Server v. Peer to Peer(1)

• RPC/RMI

• synchronous

• assymmetric

• emphasis on language 

integration and binding 

models (stub  IDL/XDR 

compilers etc)

• Kerberos style security –
access control, crypto

• messages

• asynchronous

• symmetric

• emphasis on service 

location, content 

addressing, application 

layer routing.

• anonymity, high 

availability, integrity.

• harder to get right



Spring 2000Spring 

2002

CS 461 9

Peer to peer systems actually old

• IP routers are peer to peer.

• routers discover topology, and maintain it

• routers are neither client nor server

• routers continually talk to each other

• routers inherently fault tolerant

• routers are autonomous



Spring 2000Spring 

2002

CS 461 10

Peer to peer systems

• nodes have no distinguished role

• no single point of bottleneck or failure.

• need distributed algorithms for

– service discovery (name, address, route, metric, etc)

– neighbour status tracking

– application layer routing (based possibly on content, 

interest, etc)

– resilience, handing link and node failures

– …



Spring 2000Spring 

2002

CS 461 11

Ad hoc networks and peer2peer

• wireless ad hoc networks have many similarities 

to peer to peer systems

• no a priori knowledge

• no given infrastructure

• have to construct it from “thin air”!



Spring 2000Spring 

2002

CS 461 12

Overlays and peer 2 peer systems

• P2p technology often used  to create overlays 
offering services that could be offered in the IP 
level

• useful deployment strategy

• often economically a way around other barriers to 
deployment

• IP was an overlay (on telephone core 
infrastructure)

• not all overlays are P2P (AKAMAI)



Spring 2000Spring 

2002

CS 461 13

P2P Architecture Classification

• centralized service location (CSL)

– Napster

• distributed service location with flooding (DSLF)

– Gnutella

• distributed service location with hashing (DSLH)

– CAN, Pastry, Tapestry, Chord



Spring 2000Spring 

2002

CS 461 14

NAPSTER

• the most (in)famous

• not the first (c.f. probably Eternity, from Ross 

Anderson in Cambridge)

• but instructive for what it gets right, and

• also wrong…

• also has a political message…and economic and 

legal…



Spring 2000Spring 

2002

CS 461 15

Napster
• program for sharing files over the Internet

• a “disruptive” application/technology?

• history:

– 5/99: Shawn Fanning (freshman, Northeasten U.) founds 

Napster Online music service

– 12/99: first lawsuit

– 3/00: 25%  UWisc traffic Napster

– 2/01: US Circuit Court of 

Appeals: Napster knew users 

violating copyright laws

– 7/01: # simultaneous online users:

Napster 160K, Gnutella: 40K,                   Morpheus: 

300K



Spring 2000Spring 

2002

CS 461 16

• judge orders napster to 

stop in July ‘01 

• other filesharing apps take 

over!

gnutella

napster

fastrack

8M

6M

4M

2M

0.0
b

it
s
 p

e
r 

s
e

c



Spring 2000Spring 

2002

CS 461 17

Napster: how does it work

Application-level, client-server protocol over point-to-point 
TCP 

Four steps:

• connect to Napster server

• upload your list of files (push) to server.

• give server keywords to search the full list with.

• select “best” of correct answers. (pings)



Spring 2000Spring 

2002

CS 461 18

Napster

napster.com

users

File list is 
uploaded

1.



Spring 2000Spring 

2002

CS 461 19

Napster

napster.com

user

Request
and

results

User   
requests 
search at 
server.

2.



Spring 2000Spring 

2002

CS 461 20

Napster

napster.com

user

pings pings

User pings 
hosts that 
apparently 
have data.

Looks for 
best transfer 
rate.

3.



Spring 2000Spring 

2002

CS 461 21

Napster

napster.com

user

Retrieves
file

User 
retrieves file

4.



Spring 2000Spring 

2002

CS 461 22

Napster: architecture notes

• centralized server: 

– single logical point of failure

– can load balance among servers using DNS rotation

– potential for congestion

– Napster “in control” (freedom is an illusion)

• no security: 

– passwords in plain text

– no authentication 

– no anonymity



Spring 2000Spring 

2002

CS 461 23

Distributed Search/Flooding



Spring 2000Spring 

2002

CS 461 24

Distributed Search/Flooding



Spring 2000Spring 

2002

CS 461 25

Gnutella

• peer-to-peer networking: applications connect to 
peer applications 

• focus: decentralized method of searching for files

• each application instance serves to:

– store selected files

– route queries (file searches) from and to its neighboring 
peers

– respond to queries (serve file) if file stored locally



Spring 2000Spring 

2002

CS 461 26

Gnutella

• Gnutella history:

– 3/14/00: release by AOL, almost immediately withdrawn

– too late: 23K users on Gnutella at 8 am this AM

– many iterations to fix poor initial design (poor design turned many 
people off)

• what we care about:

– how much traffic does one query generate?

– how many hosts can it support at once?

– what is the latency associated with querying?

– is there a bottleneck?



Spring 2000Spring 

2002

CS 461 27

Gnutella: how it works
Searching by flooding:

• if you don’t have the file you want, query 7 of 
your partners.

• if they don’t have it, they contact 7 of their 
partners, for a maximum hop count of 10.

• requests are flooded, but there is no tree structure.

• no looping but packets may be received twice.

• reverse path forwarding(?)

Note: Play gnutella animation at: 

http://www.limewire.com/index.jsp/p2p



Spring 2000Spring 

2002

CS 461 28

Flooding in Gnutella: loop prevention

Seen already list: “A”



Spring 2000Spring 

2002

CS 461 29

Gnutella: initial problems and fixes

• freeloading: WWW sites offering search/retrieval from 

Gnutella network without providing file sharing or query 

routing.

– Block file-serving to browser-based non-file-sharing users 

• prematurely terminated downloads: 

– long download times over modems

– modem users run gnutella peer only briefly (Napster problem also!) or 

any users becomes overloaded

– fix: peer can reply “I have it, but I am busy. Try again later”

– late 2000: only 10% of downloads succeed

– 2001: more than 25% downloads successful (is this success or 

failure?)

www.limewire.com/index.jsp/net_improvements



Spring 2000Spring 

2002

CS 461 30

Gnutella: initial problems and fixes (more)

• 2000: avg size of reachable network only 400-800 
hosts. Why so smalll?

– modem users: not enough bandwidth to provide search 
routing capabilities: routing black holes

• Fix: create peer hierarchy based on capabilities

– previously: all peers identical, most modem blackholes

– connection preferencing:

• favors routing to well-connected peers

• favors reply to clients that themselves serve large number of files: 
prevent freeloading

– Limewire gateway functions as Napster-like central server 
on behalf of other peers (for searching purposes)

www.limewire.com/index.jsp/net_improvements



Spring 2000Spring 

2002

CS 461 31

Gnutella Discussion:

• architectural lessons learned?

• anonymity and security?

• other?

• good source for technical info/open questions:

http://www.limewire.com/index.jsp/tech_papers



Spring 2000Spring 

2002

CS 461 32

Kazaa

• hierarchical Gnutella

– supernodes and regular nodes

• most popular p2p app

– >120M downloads

• not well understood

– binaries

– encrypted         communications

supernodes



Spring 2000Spring 

2002

CS 461 33

Pastry

• Self-organizing overlay network

• Consistent hashing

• Lookup/insert object in <  log16 N routing steps 

(expected)

• O(log N) per-node state

• Network locality heuristics



Spring 2000Spring 

2002

CS 461 34

Object Distribution

Consistent hashing

[Karger et al. ‘97]

128 bit circular id space

nodeIds (uniform random)

objIds (uniform random)

Invariant: node with 

numerically closest nodeId 

maintains object

objid

nodeids

02128 - 1



Spring 2000Spring 

2002

CS 461 35

Content-Addressable Network
[Ratnasamy,etal]

• introduction

• design

• evaluation

• strengths & weaknesses

• ongoing work



Spring 2000Spring 

2002

CS 461 36

Content-Addressable Network
(CAN)

• CAN: Internet-scale hash table

• interface

– insert(key,value)

– value = retrieve(key) 



Spring 2000Spring 

2002

CS 461 37

Content-Addressable Network
(CAN)

• CAN: Internet-scale hash table

• interface

– insert(key,value)

– value = retrieve(key) 

• properties
– scalable

– operationally simple

– good performance (w/ improvement)



Spring 2000Spring 

2002

CS 461 38

K  V

CAN: basic idea

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V



Spring 2000Spring 

2002

CS 461 39

CAN: basic idea

insert
(K1,V1)

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V



Spring 2000Spring 

2002

CS 461 40

CAN: basic idea

insert
(K1,V1)

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V



Spring 2000Spring 

2002

CS 461 41

CAN: basic idea

(K1,V1)

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V



Spring 2000Spring 

2002

CS 461 42

CAN: basic idea

retrieve (K1)

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V



Spring 2000Spring 

2002

CS 461 43

CAN: basic idea

(K1,V1)

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V

K  V



Name based routing for mobile users

Spring 2000Spring 

2002

CS 461 44

Name based 

routing (locality)



The rest of slides for blockchains, 

Bitcoin, and NFTs, are abstracted 

from Wikipedia

45



Blockchain (from Wikipedia)

46

• A blockchain is a continuously growing list of records, 

called blocks, which are linked and secured using 

cryptography.

• Each block typically contains a hash pointer as a link to a 

previous block, a timestamp (and a nouce) and transaction 

data.



Blockchain

Spring 2000Spring 

2002

CS 461 47

• It is "an open, distributed ledger that can record transactions 

between two parties efficiently and in a verifiable and 

permanent way".

• For use as a distributed ledger, a blockchain is typically 

managed by a peer-to-peer network collectively adhering to 

a protocol for validating new blocks.

• Once recorded, the data in any given block cannot be altered 

retroactively without the alteration of all subsequent blocks, 

which requires collusion of the network majority. 



Blockchain (P2p substrate)

48

• A node in the P2p network supports relaying transactions, 

validation or hosting a copy of the blockchain. 

• In terms of relaying transactions, each node has a copy of 

the blockchain of the cryptocurrency it supports. 

• When a transaction is made the node creating the transaction 

broadcasts details of the transaction using encryption to 

other nodes throughout the node network so that the 

transaction (and every other transaction) is known.

• Node owners are either volunteers, those hosted by the 

organization or body responsible for developing the 

cryptocurrency blockchain network technology, or those 

who are enticed to host a node to receive rewards from 

hosting the node.



Blockchain (Mining)

49

• Mining is a validation of transactions (through hashing 

algoritms). 

• For this effort, successful miners obtain new cryptocurrency 

as a reward.

• The reward for finding a hash has diminished and often does 

not justify the investment in equipment and cooling facilities 

(to mitigate the heat the equipment produces), and the 

electricity required to run them.

• By July 2019, Bitcoin's electricity consumption was 

estimated to be approximately 7 gigawatts, around 0.2% of 

the global total, or equivalent to the energy consumed 

nationally by Switzerland.



Blockchain (Wallet)

50

• A cryptocurrency wallet stores the public and private "keys" 

(address) which can be used to receive or spend the 

cryptocurrency.

• With the private key, it is possible to write in the public 

ledger.

• With the public key, it is possible for others to send currency 

to the wallet.

• Bitcoin is pseudonymous in that the cryptocurrency within a 

wallet is not tied to people, but rather to specific private 

“keys”.



Blockchain (Bitcoin)

51

• A block (in Bitcoin blockchain) contains a SHA-256 

cryptographic hash of the previous block, thus linking it to 

the previous block.

• To be accepted by the rest of the network, a new block must 

contain a proof-of-work (PoW).

• The PoW requires miners to find a number called a nonce

(number used once), such that when the block content is 

hashed along with the nonce, the result is numerically 

smaller than the network's difficulty target.

• This proof is easy for any node in the network to verify, but 

extremely time-consuming to generate.

• By adjusting this difficulty target, the amount of work 

needed to generate a block can be changed. (As of 

11 May 2020, the reward is currently 6.25 newly created 

bitcoins per block.)



Blockchain (Bitcoin)

52

• Bitcoin does not have a central authority.

• The bitcoin network is peer-to-peer, without central servers.

• The network also has no central storage; the bitcoin ledger is 

distributed.

• The ledger is public; anybody can store it on a computer.

• There is no single administrator; the ledger is maintained by 

a network of equally privileged miners.

• Anyone can become a miner.

• The additions to the ledger are maintained through 

competition. Until a new block is added to the ledger, it is 

not known which miner will create the block. 

• The issuance of bitcoins is decentralized. They are issued as 

a reward for the creation of a new block.

• Anybody can create a new bitcoin address and send a 

transaction to the network.



Non-fungible token (NFT)

53

• Fungibility is the property of a good or a commodity whose 

individual units are essentially interchangeable and each of 

whose parts is indistinguishable from another part.

• Fungible tokens are the ones that can be exchanged or 

replaced; for example, a ten rupees note can easily be 

exchanged with two five rupees coins. 

• Gold is fungible since a specified amount of pure gold is 

equivalent to that same amount of pure gold.

• Cryptocurrencies are fungible assets.

• An NFT is a unit of data, stored on a type of digital ledger 

called a blockchain (Ethereum), which can be sold and 

traded.

• NFTs are not mutually interchangeable, and so are not 

fungible.



Non-fungible token (NFT)

54

• The cryptographic transaction process in the underlying 

blockchain ensures the authentication of each digital file by 

providing a digital signature that tracks NFT ownership.

• Ownership of an NFT does not inherently grant copyright or 

intellectual property rights to the digital asset the NFT. 

• An NFT is merely proof of ownership separate from 

copyright.

• Digital art is a common use case for NFTs.

• NFTs can represent in-game assets, such as digital plots of 

land. 

• NFTs representing digital collectables and artworks are a 

speculative asset.

• NFTs, as with other blockchain securities and with 

traditional art sales, can potentially be used for money 

laundering.



Ethereum and smart contracts

55

• A smart contract is a computer program or a transaction 

protocol which is intended to automatically execute, control 

or document legally relevant events and actions according to 

the terms of a contract or an agreement.

• Ethereum is a decentralized, open-source blockchain with 

smart contract functionality. 

• Ether is the native cryptocurrency of the platform. 

• Ether is second only to Bitcoin in market capitalization. 

• Ethereum also allows users to create and exchange NFTs.

• Ethereum 2.0 (also known as Serenity) aims to increase 

transaction throughput by splitting up the workload into 

many blockchains running in parallel.

• Decentralized finance (DeFi) is a use case of Ethereum.


